產品目錄
Products工程振動量值的物理參數常用位移、速度和加速度來表示。由于在通常的頻率范圍內振動位移幅值量很小,且位移、速度和加速度之間都可互相轉換,所以在實際使用中振動量的大小一般用加速度的值來度量。常用單位為:米/秒2 (m/s2),或重力加速度(g)。
描述振動信號的另一重要參數是信號的頻率。盡大多數的工程振動信號均可分解成一系列特定頻率和幅值的正弦信號,因此,對某一振動信號的丈量,實際上是對組成該振動信號的正弦頻率分量的丈量。對傳感器主要性能指標的考核也是根據傳感器在其規定的頻率范圍內丈量幅值精度的高低來評定。
zui常用的振動丈量傳感器按各自的工作原理可分為壓電式、壓阻式、電容式、電感式以及光電式。壓電式加速度傳感器由于具有丈量頻率范圍寬、量程大、體積小、重量輕、對被測件的影響小以及安裝使用方便,所以成為zui常用的振動傳感器。
傳感器的種類選擇
·壓電式- 原理和特點
壓電式傳感器是利用彈簧質量系統原理。敏感芯體質量受振動加速度作用后產生一個與加速度成正比的力,壓電材料受此力作用后沿其表面形成與這一力成正比的電荷信號。壓電式加速度傳感用具有動態范圍大、頻率范圍寬、堅固耐用、受外界干擾小以及壓電材料受力自產生電荷信號不需要任何外界電源等特點,是被使用的振動丈量傳感器。固然壓電式加速度傳感器的結構簡單,貿易化使用歷史也很長,但因其性能指標與材料特性、設計和加工工藝密切相關,因此在市場上銷售的同類傳感器性能的實際參數以及其穩定性和一致性差別非常大。與壓阻和電容式相比,其zui大的缺點是壓電式加速度傳感器不能丈量零頻率的信號。
·壓阻式
應變壓阻式加速度傳感器的敏感芯體為半導體材料制成電阻丈量電橋,其結構動態模型仍然是彈簧質量系統。現代微加工制造技術的發展使壓阻形式敏感芯體的設計具有很大的靈活性以適合各種不同的丈量要求。在靈敏度和量程方面,從低靈敏度高量程的沖擊丈量,到直流高靈敏度的低頻丈量都有壓阻形式的加速度傳感器。同時壓阻式加速度傳感器丈量頻率范圍也可從直流信號到具有剛度高,丈量頻率范圍到幾十千赫茲的高頻丈量。超小型化的設計也是壓阻式傳感器的一個亮點。需要指出的是盡管壓阻敏感芯體的設計和應用具有很大靈活性,但對某個特定設計的壓阻式芯體而言其使用范圍一般要小于壓電型傳感器。壓阻式加速度傳感器的另一缺點是受溫度的影響較大,實用的傳感器一般都需要進行溫度補償。在價格方面,大批量使用的壓阻式傳感器本錢價具有很大的市場競爭力,但對特殊使用的敏感芯體制造本錢將遠高于壓電型加速度傳感器。
·電容式
電容型加速度傳感器的結構形式一般也采用彈簧質量系統。當質量受加速度作用運動而改變質量塊與固定電極之間的間隙進而使電容值變化。電容式加速度計與其它類型的加速度傳感器相比具有靈敏度高、零頻響應、環境適應性好等特點,尤其是受溫度的影響比較小;但不足之處表現在信號的輸進與輸出為非線性,量程有限,受電纜的電容影響,以及電容傳感器本身是高阻抗信號源,因此電容傳感器的輸出信號往往需通過后繼電路給于改善。在實際應用中電容式加速度傳感器較多地用于低頻丈量,其通用性不如壓電式加速度傳感器,且本錢也比壓電式加速度傳感器高得多。
壓電式傳感器的敏感芯體材料和結構形式
·壓電材料
壓電材料一般可以分為兩大類,即壓電晶體和壓電陶瓷。在壓電型加速度計的zui常用的壓電晶體為石英,其特點為工作溫度范圍寬,性能穩定,因此在實際應用中經常被用作標準傳感器的壓電材料。由于石英的壓電系數比其他壓電材料低得多,因此對通用型壓電加速度計而言更為常用的壓電材料為壓電陶瓷。壓電陶瓷中鋯鈦酸鉛(PZT)是目前壓電加速度計中zui經常使用的壓電材料。其特點為具有較高的壓電系數和居里點,各項機電參數隨溫度時間等外界條件的變化相對較小。必須指出的是,就同一品種的壓電陶瓷而言,固然都有相同的基本特性,但由于制作工藝不同可以使兩個相同材料的壓電陶瓷的具體性能指標相差甚大。這種現象可以通過典型的國產傳感器和進口傳感器的比較得以反映,國內振動測試業幾十年的經驗對此深有體會。 ·傳感器敏感芯體的結構形式
壓電加速度傳感器的敏感芯體一般由壓電材料和附加質量塊組成,當質量塊受到加速度作用后便轉換成一個與加速度成正比并加載到壓電材料上的力,而壓電材料受力后在其表面產生一個與加速度成正比的電荷信號。壓電材料的特性決定了作用力可以是受正應力也可以是剪應力,壓電材料產生的電荷大小隨作用力的方向以及電荷引出表面的位置而變。根據壓電材料不同的受力方法,常用傳感器敏感芯體的結構一般有以下三種形式:
1)壓縮形式– 壓電材料受到壓縮或拉伸力而產生電荷的結構形式。壓縮式敏感芯體是加速度傳感器中zui為傳統的結構形式。其特點是制造簡單方便,能產生較高的自振諧振頻率和較寬的頻率丈量范圍。而zui大的缺點是不能有效地排除各種干擾對丈量信號的影響。
2)剪切形式– 通過對壓電材料施加剪切力而產生電荷的結構形式。從理論上分析在剪切力作用下壓電材料產生的電荷信號受外界干擾的影響甚小,因此剪切結構形式成為使用的加速度傳感器敏感芯體。然而在實際制造過程中,確保剪切敏感芯體的加速度計持有較高和穩定的頻率丈量范圍卻是傳感器制造中工藝中zui為困難的一個環節, 采用進口記憶金屬材料的緊固件從而保證傳感用具有穩定可靠的諧振頻率和頻率丈量范圍。
3)彎曲變形梁形式- 壓電材料受到彎曲變形而產生電荷的結構形式。彎曲變形梁結構可產生比較大的電荷輸出信號,也較輕易實現控制阻尼;但由于其丈量頻率范圍低,更由于此結構不能排除因溫度變化而極輕易產生的信號漂移,所以此結構在壓電型加速度計的設計中很少被采用。
壓電式加速度傳感器的信號輸出形式
壓電型式的加速度計是振動測試的zui主要傳感器。固然壓電型加速度計的丈量范圍寬,但因市場上此類加速度計品種繁多,所以給正確的選用帶來一定的難度。作為選用振動傳感器的一般原則:正確的選用應該基于對丈量信號以下三方面的分析和估算。
a.被測振動量的大小
b.被測振動信號的頻率范圍
c.振動測試現場環境
傳感器的靈敏度與量程范圍
傳感器的靈敏度是傳感器的zui基本指標之一。靈敏度的大小直接影響到傳感器對振動信號的丈量。不難理解,傳感器的靈敏度應根據被測振動量(加速度值)大小而定,但由于壓電加速度傳感器是丈量振動的加速度值,而在相同的位移幅值條件下加速度值與信號的頻率平方成正比,所以不同頻段的加速度信號大小相差甚大。大型結構的低頻振動其振動量的加速度值可能會相當小,例如當振動位移為 1mm, 頻率為1 Hz 的信號其加速度值僅為0.04m/s2(0.004g);然而對高頻振動當位移為0.1mm,頻率為10 kHz的信號其加速度值可達4 x 10 5m/s2 (40000g)。因此盡管壓電式加速度傳感用具有較大的丈量量程范圍,但對用于丈量高低兩端頻率的振動信號,選擇加速度傳感器靈敏度時應對信號有充分的估計。zui常用的振動丈量壓電式加速度計靈敏度,電壓輸出型為50~100 mV/g,電荷輸出型為10 ~ 50 pC/g。
加速度值傳感器的丈量量程范圍是指傳感器在一定的非線性誤差范圍內所能丈量的zui大丈量值。通用型壓電加速度傳感器的非線性誤差大多為1%。作為一般原則,靈敏度越高其丈量范圍越小,反之靈敏度越小則丈量范圍越大。
電壓輸出型壓電加速度傳感器的丈量范圍是由在線性誤差范圍內所答應的zui大輸出信號電壓所決定,zui大輸出電壓量值一般都為±5V。通過換算就可得到傳感器的zui大量程,即即是zui大輸出電壓與靈敏度的比值。需要指出的是壓電傳感器的量程除受非線性誤差大小影響外,還受到供電電壓和傳感器偏置電壓的制約。當供電電壓與偏置電壓的差值小于傳感器技術指標給出的量程電壓時,傳感器的zui大輸出信號就會發生畸變。因此IEPE 型加速度傳感器的偏置電壓穩定與否不僅影響到低頻丈量也可能會使信號失真;這種現象在高低溫丈量時需要特別留意,當傳感器的內置電路在非室溫條件下不穩定時,傳感器的偏置電壓很可能不斷緩慢地漂移信號不穩定
傳感器的高頻丈量指標通常由高頻截止頻率來確定,而一定截止頻率與對應的幅值誤差相;所以傳感器選用時不能只看截至頻率,必須了解對應的幅值誤差值。傳感器的頻率幅值誤差小不僅是丈量精度進步,更重要的是體現了傳感器制造過程中控制安裝精度偏差地能力。另外由于丈量對象的振動信號頻率帶較寬,或傳感器的固有諧振頻率不夠高,因而被激發的諧振信號波可能會疊加在丈量頻帶內的信號上,造成較大的丈量誤差。所以在選擇傳感器的高頻丈量范圍時除高頻截至頻率外,還應考慮諧振頻率對丈量信號的影響;當然這種丈量頻段外的信號也可通過在丈量系統中濾波器給予消除。
一般情況下傳感器的高頻截止頻率與輸出信號的形式(即電荷型或低阻電壓型)無關;而與傳感器的結構設計,制造以及安裝形式和安裝質量都密切相關。以下表格是對不同型式加速度傳感器的高頻響應作一個定性的回類,供用戶在選用時對比和參考。
傳感器輸出接頭形式
M5 ( 接頭是加速度傳感器zui為常用的輸出接頭形式。M5接頭特點是尺寸較小,一般配用直徑較細的電纜 (2mm 或 3mm ),比較適合振動實驗的測試。另外M5 (M6) 的結構型式對信號屏蔽較好,所以對電荷輸出型加速度傳感器因其輸出為較輕易受干擾的高阻抗信號一般均采用M5 (M6) 接頭。丈量振動的加速度傳感器接頭一般避免使用Q9 (BNC), 原因是Q9 (BNC),接頭組件沒有螺紋聯接,構件之間的機械耦合剛度較低;因此假如加速度傳感器輸出采用Q9(BNC),,其將會影響傳感器的高頻響應。
用于產業環境下的振動丈量加速度傳感器按可分為巡回檢測和在線監測,前者一般采用單層殼屏蔽型式,因此傳感器的接頭較多使用M6 或TNC接頭。而在線監測因經常采用雙層屏蔽的結構型式,與其對應的電纜為雙芯屏蔽電纜,所以雙芯產業接頭如M12, M16 以及C5015均被廣泛使用。另外連體電纜具有較高的可靠性,因此在產業環境下使用的傳感器無論是單層和雙層屏蔽的結構都廣泛采用連體電纜為輸出接頭的形式。
需要指出的是無論是那一種輸出接頭對水下測量都有其局限性,即使傳感器本身密封性能達到要求,但電纜聯接一般都需要做特殊處理后才能用。
·電纜的選擇
對輸出為高阻抗信號的電荷型壓電型傳感器而言,為保證測量信號不受因電纜移動而造成噪聲的影響,傳感器的輸出信號電纜一般都采用低噪聲電纜。而輸出為低阻抗電壓信號的IEPE 傳感器,低噪聲電纜并不一定是必須的。高頻,低頻信號對電纜不同要求的典型的例子是多軸向丈量傳感器的電纜,多通道高阻抗信號的電纜必須是各自獨立的低噪聲屏蔽電纜,而多通道低阻抗的電壓信號便可采用多芯絞線加屏蔽的電纜。
在通用型傳感器的電纜配備中因考慮到電纜的重量和成本,Φ2 mm 直徑的低噪聲電纜為加速度傳感器的標準配置。產業現場用的傳感器一般以IEPE 型為主,電纜本身的強度也成為重要考慮因素,因此Φ3 mm 直徑的低噪聲電纜和Φ4.5 mm 直徑的普通同軸屏蔽電纜成為zui常使用的電纜。而對雙層屏蔽殼設計的傳感器的電纜配置均為雙絞芯線外加屏蔽的電纜。
在加速度傳感器輸出信號電纜的選擇中,除電纜結構外,其他zui經常考慮的指標是電纜的應用溫度以及在產業現場測試中電纜外層材料耐腐蝕的能力。zui為普遍使用的電纜盡緣材料為PVC, 使用溫度范圍為-40oC 到+105oC 。對應用環境較惡劣的場合,zui經常選用的電纜盡緣材料為聚四氟乙烯;其使用溫度范圍為-45oC 到+250oC,且耐腐蝕能力也優于其它大多數電纜盡緣材料。但用四氟材料做的電纜柔性較差,價格也遠高于PVC 材料。
外界環境對傳感器的影響
·傳感器橫向靈敏度及橫向振動對丈量的影響
由于壓電材料自身特性,敏感芯體的結構設計和制造精度偏差使傳感器不可避免地對橫向振動產生輸出信號,其大小由橫向輸出和垂直方向 輸出的比值百分數來表示。
根據不同敏感芯體結構和材料特性的組合,壓縮型結構在理論上便存在橫向輸出,需要通過裝配調節的方式給予抵消,而在實際制造過程中很難實現真正的抵消,因此壓縮型加速度傳感器的橫向靈敏度的離散度很大。與壓縮型相比剪切型設計在理論上不存在橫向輸出,傳感器的實際橫向輸出一般是由材料加工和裝配精度所引起的誤差。所以從這兩種敏感芯體的實際對比結果來看,剪切型壓電加速度傳感器的橫向靈敏度普遍優于壓縮型式。而敏感芯體為彎曲梁結構形式的橫向靈敏度一般說介于剪切型和壓縮型之間。根據敏感芯體的結構特性,在其受橫向振動時與垂直方向振動一樣,也有相應的結構頻率響應。所以橫向振動也同樣可能在某一頻率點產生諧振,以至產生較大的橫向振動偏差。
·溫度對傳感器輸出的影響
溫度改變而引起傳感器輸出變化是由壓電材料(敏感芯體)特性所造成的。根據壓電材料的分類,石英晶體受溫度影響zui小,而人工合成晶體的使用溫度甚至高于石英;但在貿易化的壓電加速度傳感器中zui多使用的壓電材料還是壓電陶瓷。壓電陶瓷敏感芯體的輸出高溫時隨溫度上升而增大,低溫時隨溫度降低而減小;但傳感器輸出與溫度間并不呈線性變化,一般說低溫時的輸出變化比高溫時的要大。另由于各傳感器的溫度響應很難保持一致,所以實際使用中傳感器的輸出一般很少用溫度系數進行修正。典型溫度響應曲線或溫度系數一般只作為對傳感器溫度特性的衡量。壓電陶瓷對溫度響應除材料本身特性之外,生產工藝也將直接影響壓電材料對溫度的響應,而同種材料對溫度響應的離散度更是如此。同樣是鋯鈦酸鉛材料,不同的廠商由于采用不同的生產工藝,使得相同材料的壓電陶瓷而其各自的使用溫度范圍,溫度響應和溫度響應的離散度相差甚大。綜合對壓電材料的基礎研究和生產加工工藝,目前國內壓電陶瓷的溫度特性與*進水準相比還有一定差距;為確保用戶對傳感器的特殊要求,北智采用進口壓電陶瓷,使傳感器的高溫使用溫度可在 +250oC 下長期使用,而且溫度響應及其離散度都好于國產壓電陶瓷。
不同的敏感芯體結構設計對溫度的變化的響應會產生不同的結果。由于不同材料有不同的線膨脹系數,因此溫度變化必然使壓電材料和金屬配件之間產生因線膨脹系數不同而造成的應力變化;這種由溫度產生的應力使壓縮式和彎曲梁型的敏感芯體產生輸出信號,有時這種溫度變化引起的輸出會大于振動丈量信號(特別在低頻丈量中)。需要特別指出溫度變化有穩態和瞬態兩種,傳感器輸出靈敏度隨溫度變化通常是指穩態高低溫度狀態對信號輸出的影響。瞬態溫度變化對傳感器輸出的影響主要表現在低頻丈量中,請參看應用>低頻丈量
·傳感器的基座應變靈敏度
傳感器受被測物體在傳感器安裝處應變的影響,可能導致傳感器輸出的變化。傳感器的基座應變靈敏度一般由傳感器基座剛度,傳感器與被測件的接觸面積以及敏感芯體結構設計形式所決定。剪切結構形式的敏感芯體與傳感器基座間的接觸面積很小,因而剪切芯體受基座應變的作用也相對較小,且這種應變并不直接導致壓電陶瓷的輸出。所以剪切敏感芯體傳感器的基座應變靈敏度指標通常比壓縮式的要好,在無需改變傳感器的基座剛度以及與被測件的接觸面積情況下(改變這兩點都將影響傳感器的頻率響應指標),剪切型傳感器一般都能滿足大部分結構丈量的要求。
·聲場和磁場對傳感器的影響
聲波和磁場對傳感器的作用也都可能引起信號輸出,這種輸出的大小與傳感器靈敏度的比值被稱作為壓電傳感器的聲靈敏度和磁靈敏度。
聲靈敏度是表示傳感器在強聲場的作用下,加速度傳感器的輸出值。加速度信號輸出主要是聲波通過對傳感器外殼體的作用,再由外殼體傳輸給內部的敏感芯體而導致的信號輸出。zui直接減小傳感器聲靈敏度的方法是增加傳感器外殼的厚度,盡大多數傳感器的這一指標都能滿足通常的丈量條件。
磁靈敏度是表示傳感器在強交變磁場作用下,加速度傳感器的輸出值。傳感器內部敏感芯體受磁力的作用而導致信號輸出是傳感器產生磁靈敏度的基本原因。因此在傳感器設計中,金屬零部件盡量采用無磁或弱磁的材料是降低傳感器磁靈敏度zui直接的措施。另外雙層屏蔽殼結構形式也能較好地減小傳感器的磁靈敏度,同時雙層屏蔽殼形式還能有效地防止磁場對輸出電信號的干擾。
上一篇:高低頻壓電加速度傳感器選擇
下一篇:振動傳感器原理與應用